FROST

FROST: Flexible Round-Optimized Schnorr Threshold Signatures

threshold signature

基于schnorr signature, 注意c=H(R, Y, m)

Feldman’s Verifiable Secret Sharing (VSS) Scheme

t-1阶多项式f, f(0)=s,coffients为(a1, . . . , at−1)

distributing the private share (i, f (i)) to each participant Pi

C = 〈φ0, . . . , φt−1〉
φ0 = g^s
φj = g^aj

显然,可以用Lagrange校验

KeyGen

基于VSS。

Round 1:

每个Pi都随机生成自己的fi, 以ai0为私钥计算φi0=g^ai0的schnorr signature σi, 广播σiCi = 〈φi0, . . . , φi(t−1)〉

Round 2:

Each Pi securely sends to each other participant Pl a secret share (l, fi(l))

Pi 校验g^fl(i)等于φlk^(i^k mod q), 0 ≤ k ≤ t-1的积,相当于Pi确认fi(l)与Pl发布的Cl匹配

Pi 计算

si = ∑ fl(i), 1 ≤ l ≤ n
Yi = g^si
Y = ∏ φj0, 1 ≤ j ≤ n

其他Pj可以校验Yi = ∏ ∏ φlk^(i^k mod q), 0 ≤ k ≤ t-1; 1 ≤ l ≤ n

si相当于每个Participants的f在i上取值的和,作为Pi的私钥

而Y相当于以每个Participants的f的0上取值的和求幂, 即为公共Public Key

Preprocess for signing

每个Pi随机生成nonce list ` ((dij , Dij), (eij , Eij)), 1 ≤ j ≤ π, Li是(Dij, Eij), 1 ≤ j ≤ π`的集合

一次Preprocess生成的π份nonce,可以算π次signature

用过即删

Signing

SA为此次Signing选择α : t ≤ α ≤ n participants, the next available commitment (Di, Ei) : i ∈ S集合记为B

ρi = H1(i, m, B)

ki = di + ei · ρi

Ri = Di · Ei^(ρi)
zi = di + (ei · ρi) + λi · si · c

verify g^(zi) = Ri · Yi^(c·λi)

R = ∏ Ri, i∈S 
z = ∑ zi, i∈S 
σ = (R, z)

verify R = g^z · Y^(-c)

显然,secret nonce相当于k = ∑ki i∈S

FROST-Interactive

主要是ρi的区别

Preprocess

(i, 〈(Dij , Eij , Aij , Bij )〉, 1 ≤ j ≤ π)

注意Aij, Bij用于辅助校验ρi

Signing

SA公开所有ρi

ρi = aij + bij · Hρ(m, B)

每个Participant校验

g^ρi = = Aij · Bij^(Hρ(m,B))

ietf draft

Two-Round Threshold Schnorr Signatures with FROST

参数名贼长。。。

hiding_nonce: di
hiding_nonce_commitment: Di

binding_nonce: ei
binding_nonce_commitment_i: Ei

binding_factor: ρi


Published

02 June 2023

Categories

Tags


Share On