doc

Verifiable Random Functions (VRFs)

基于签名机制,让verifier校验prover拥有某项内容,同时避免hash遍历的问题、字典攻击。典型例如NSEC3/NSEC5/key transparency。

pi = VRF_prove(SK, alpha)
beta = VRF_proof_to_hash(pi)
VRF_hash(SK, alpha) = VRF_proof_to_hash(VRF_prove(SK, alpha))
(VALID, beta) = VRF_verify(PK, alpha, pi)

其实校验还是基于pi做的。

VRF Security Properties

Full uniqueness & Trusted Uniqueness

Full collision resistance & Trusted collision resistance

Full pseudorandomness & Selective pseudorandomness

RSA Full Domain Hash VRF (RSA-FDH-VRF)

思路与RSASSA-PSS类似,参考RFC8017

注意beta_string = Hash(two_string || pi_string)

Elliptic Curve VRF (ECVRF)

思路与EdDSA类似,结合hash_to_curve的基础函数组合处理。

ECVRF_prove:
基于SK派生scalar x,以及 Y = x*B。
H = ECVRF_hash_to_curve(Y, alpha_string)
h_string = point_to_string(H) 
Gamma = x*H
k = ECVRF_nonce_generation(SK, h_string)
c = ECVRF_hash_points(H, Gamma, k*B, k*H)
s = ( k + c*x ) mod q
pi_string = point_to_string(Gamma) || int_to_string(c, n) || int_to_string(s, qLen)

ECVRF_proof_to_hash:
beta_string = Hash(suite_string || three_string || point_to_string(cofactor * Gamma) || zero_string )

ECVRF_verify:
H =  ECVRF_hash_to_curve(Y, alpha_string)
U = s*B - c*Y
V = s*H - c*Gamma
c' = ECVRF_hash_points(H, Gamma, U, V)
c' == c ?

ECVRF_hash_to_curve

ECVRF_hash_to_curve_try_and_increment(Y, alpha_string) 其实就是加一个计数器,参与Y, alpha_string的hash运算,看string_to_point能不能撞到一个valid point。string_to_point的做法参考RFC8032第5.1.3节,string映射到Fp域的x再求解y。

ECVRF_hash_to_curve_h2c_suite(Y, alpha_string) 复用irtf-cfrg-hash-to-curve的设定

ECVRF_nonce_generation

ECVRF_nonce_generation_RFC6979(SK, h_string), 其实就是参考Deterministic ECDSA的做法,基于SK,h_string弄一个PRNG出来

ECVRF_nonce_generation_RFC8032(SK, h_string), 其实就是参考EdDSA的做法…

ECVRF_hash_points

   ECVRF_hash_points(P1, ..., Pm):  
   str = suite_string || two_string || point_to_string(P1) ... point_to_string(Pm) || zero_string
   c_string = Hash(str)
   truncated_c_string = c_string[0 ... n-1]
   c = string_to_int(truncated_c_string)


Published

01 February 2021

Categories

Tags


Share On